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Abstract—The asymmetric conjugate addition of thiophenol to (E)-3-crotonoyloxazolidin-2-one catalysed by the scandium(III)
triflate complex of Ph-PYBOX gave the corresponding adduct in 66% ee. Lanthanoid triflates gave lower enantioselectivities
(628% ee).
� 2005 Elsevier Ltd. All rights reserved.
The asymmetric conjugate addition of thiols to acyclic
a,b-unsaturated systems remains a challenge. Different
catalysts have been employed, such as cinchona alkal-
oids,1 chiral proline derivatives,2 salenes,3 N-oxides,4 a
chiral amino ether–lithium thiolate complex5 and a
lanthanoid tris(binaphthoxide),6 but a general method
is yet to be found. The most interesting catalyst to
us was the nickel(II) aqua complex of 4,6-dibenzo-
furandiyl-2,2 0-bis(4-phenyloxazoline) (DBFOX/Ph),7

which gives enantioselectivities up to 97% ee in additions
of arylthiols to (E)-3-crotonoyloxazolidin-2-one. Unfor-
tunately, the catalyst easily degrades under the reaction
conditions, as also reported in the literature, so an
improved catalyst system is in demand.

The commercially available ligand 2,6-bis(4 0-phenyloxa-
zolin-2 0-yl)pyridine (Ph-PYBOX) complexed with
scandium(III) triflate has proven effective in many types
of reactions,8 but has not been employed in conjugate
additions with thiols, so we decided to investigate it in
this work.

We investigated the synthesis9 of compound (S)-310

(Scheme 1) through an asymmetric conjugate addition
of (E)-3-crotonoyloxazolidin-2-one (1) and thiophene-
2-thiol (2), an intermediate for the anti-glaucoma drug
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dorzolamide (4).11 In addition to Sc(III) triflate, we also
employed the La(III), Ce(IV) and Yb(III) triflate com-
plexes of (R,R)-Ph-PYBOX (5), as well as the Sc(III) tri-
flate complex of (R,R)-DBFOX/Ph (6). The Sc(III)
triflate used was anhydrous, the lanthanoid triflates were
hydrates. The results are shown in Table 1.

All reactions proceeded to completion as judged by
TLC. Addition of a proton sponge (N,N,N 0,N 0-tetra-
methyl-1,8-naphthalenediamine) did not improve the
enantioselectivity as with the DBFOX/Ph–Ni-complex.7

DBFOX/Ph produced only racemic 3, as scandium does
not seem to ‘fit’ inside the centre of DBFOX/Ph (Sc-Ph-
PYBOX has N–Sc distances of 2.33 Å, Ni-DBFOX/Ph
has N–Ni and O–Ni distances of 2.05 and 2.12 Å).12

Cerium(IV) triflate did not readily dissolve in the
reaction media and thus the formation of the catalyst
complex was not complete.

The Ph-PYBOX–triflate complexes were also used in the
Michael addition with thiophenol (7, Scheme 2 and
Table 2).13 The ligand 9, designated inda-PYBOX, also
successfully applied in enantioselective synthesis,8a,14

was prepared15 and tested. Molecular sieves were
employed in the reactions to see if the water of crystal-
lisation of the lanthanoid triflates had any effect on the
enantioselectivity.

The molecular sieves had no marked effect on the
Sc(III)-catalysed reactions, and the enantioselectivies
in the reactions catalysed by lanthanoids still remained
low. Ce(IV) triflate continued having solubility problems,
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Scheme 1. Synthetic path and the ligands Ph-PYBOX 5 and DBFOX/Ph 6.
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Scheme 2. Michael addition with thiophenol and inda-PYBOX 9.

Table 2. Michael addition with thiophenol and 5 mol % of catalyst

Ligand Triflate %ee Configuration Yield (%) Notes

Ph-PYBOX Sc(III) 66 R a

Ph-PYBOX Sc(III) 62 R 86 Molecular sieves
inda-PYBOX Sc(III) 57 S 86 Molecular sieves
Ph-PYBOX La(III) (hydrate) 29 R 99 Molecular sieves
Ph-PYBOX Ce(IV) (hydrate) 14 S 24b Molecular sieves
Ph-PYBOX Yb(III) (hydrate) 28 R 99 Molecular sieves

a Yield not measured.
b Incomplete conversion.

Table 1. Michael addition of thiophene-2-thiol with 5 mol % of catalyst

Ligand Triflate %ee Configuration Notes

Ph-PYBOX Sc(III) 59 R

Ph-PYBOX Sc(III) 45 R Proton sponge (5 mol %)
Ph-PYBOX Sc(III) 67 R �20 �C
DBFOX/Ph Sc(III) 0
Ph-PYBOX La(III) (hydrate) 13 R

Ph-PYBOX Ce(IV) (hydrate) 6 R Solubility problems
Ph-PYBOX Yb(III) (hydrate) 22 R
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and gave the opposite enantiomer. Inda-PYBOX proved
to be less selective than Ph-PYBOX.
The absolute configuration of 3 was determined by
transforming it to the corresponding methyl ester 10
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Scheme 3. Determination of the absolute configuration of (S)-3.
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(Scheme 3) with EtMgBr in methanol at 0 �C. A sample
of (S)-1016 was prepared from tosylate (R)-1117 via the
method of Blacklock et al.11 Comparison of the HPLC
data and optical rotation confirmed the absolute configu-
ration of 3.

The asymmetric Michael addition of thiophene-2-thiol
and thiophenol to (E)-3-crotonoyloxazolidin-2-one
catalysed by metal triflate–Ph-PYBOX complexes pro-
duced low to moderate enantioselectivities. Scan-
dium(III) triflate performed markedly better (59–66%
ee) compared to La(III), Ce(IV) and Yb(III) triflates
(6–29% ee). The enantioselectivity with inda-PYBOX
was slightly lower than with Ph-PYBOX, whilst
DBFOX/Ph gave only racemic product.
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